On Quasi-Irresolute Functions in Fuzzy Minimal Structures

Mihai Brescan

Petroleum-Gas University, Mathematics Department, Bd. Bucuresti, 39, Ploiesti, 100680 e-mail: mate @upg-ploiesti.ro

Abstract

The present paper attempts to generalize, for a fuzzy minimal structure, the concept of quasi-irresolute function introduced in the General Topology by V. Popa and T. Noiri. Several theorems are to be outlined, both referential theorems and theorems establishing equivalences between different concepts.

Keywords: *fuzzy topological space, fuzzy minimal structure, fuzzy Fm - quasi- irresolute function, fuzzy Fm - irresolute function, fuzzy Fm - contra-continuous function, fuzzy Fm - almost- contra-continuous function*

Preliminaries

Consider X an arbitrary non-empty set and the unit interval $J = [0,1] \subset \mathbb{R}$. A fuzzy set in X is an application $\lambda : X \to [0,1]$. $\mathcal{F}(X)$ marks the class of fuzzy sets in X. The X set, known as the X space, will be identified with the constant function **1** and the empty set \emptyset will be identified with the constant function **0**.

Consider *I* an index set and $\{\lambda_i\}_{i \in X}$ a class of fuzzy sets in *X*. The union and the intersection of this class, denoted as $\bigcup_{i \in I} \lambda_i$ and as $\bigcap_{i \in I} \lambda_i$ are defined by:

$$\bigcup_{i\in I}\lambda_i(x) = \sup_{i\in I}\lambda_i(x), \ \bigcap_{i\in I}\lambda_i(x) = \inf_{i\in I}\lambda_i(x), (\forall)x\in X.$$

If $\lambda_1, \lambda_2 \in \mathcal{F}(X)$, the inclusion denoted as $\lambda_1 \leq \lambda_2$ or $\lambda_1 \subseteq \lambda_2$, is defined by $\lambda_1(x) \leq \lambda_2(x), (\forall)x \in X$ and the equality denoted as $\lambda_1 = \lambda_2$ is defined by $\lambda_1(x) = \lambda_2(x), (\forall)x \in X$. Obviously, $\lambda_1 = \lambda_2$ if and only if $\lambda_1 \leq \lambda_2$ and $\lambda_2 \leq \lambda_1$. The complement of $\lambda \in \mathcal{F}(X)$, denoted as λ^c , is defined by $\lambda^c = 1 - \lambda$, $\lambda^c(x) = 1 - \lambda(x), (\forall)x \in X$.

Consider X and Y two arbitrary non-empty sets, an application $f: X \rightarrow Y$ and $\lambda \in \mathcal{F}(X)$, $\mu \in \mathcal{F}(Y)$.

The image of λ is the fuzzy set $f(\lambda) \in \mathcal{F}(Y)$ defined by

$$f(\lambda)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} p\lambda(x), \text{ if } f^{-1}(y) \text{ is a nonempty set} \\ 0, \text{ otherwise} \end{cases}$$

The inverse or reciprocal image of μ is the fuzzy set $f^{-1}(\mu) \in \mathcal{F}(X)$ described by $f^{-1}(\mu)(x) = \mu(f_{(x)}), \forall x \in X$, that is $f^{-1}(\mu) = \mu \circ f$, in the sense of an ordinary composition of functions ([7]). The properties of f and f^{-1} are explained in ([13]).

A fuzzy point x_{α} in X is the fuzzy set in X which has the value α in the point $x \in X$ ($0 < \alpha \le 1$) and the value 0 in the other points of the X space; we say that x_{α} has the support x (denoted as supp $x_{\alpha}=x$) and the value α ([9]). We can write this

$$x_{\alpha}(y) = \begin{cases} \alpha, \ y = x \\ 0, \ y \neq x \end{cases}, \ y \in X.$$

A fuzzy set is equivalent with the union of all its fuzzy points. We assume that the fuzzy point x_{α} is an element of the fuzzy set $\lambda \in \mathcal{F}(X)$ and it is denoted as $x_{\alpha} \in \lambda$ if $\alpha \leq \lambda(x), (\forall)x \in X$. The relation $x_{\alpha} \in \bigcup_{i \in I} \lambda_i$ holds if there exists $i_0 \in I$ so that $x_{\alpha} \in \lambda_{i_0}$. If x_{α} is a fuzzy point in X and $f: X \to Y$, then $f(x_{\alpha})$ is a fuzzy point in Y; if supp $x_{\alpha} = x$, then supp $(f(x_{\alpha})) = f(x)$. If y_{β} is a fuzzy point in X if $y_{\beta} \in f(x)$ and f is an injective function. In this case, if supp $y_{\beta} = y$, then supp $(f^{-1}(y_{\beta})) = f^{-1}(y_{\beta})$ ([13]).

We assume that the fuzzy point x_{α} is quasi-coincident (or q-coincident) with the set λ if $\alpha + \lambda(x) > 1$, $x \in X$ and this is denoted as $x_{\alpha}q\lambda$; otherwise, we obtain $\alpha + \lambda(x) \le 1$, which is as $x_{\alpha}\overline{q}\lambda$ ([9]).

The sets $\lambda, \mu \in \mathcal{F}(X)$ are said to be quasi-coincident sets (or q-coincident) if there exists $x \in X$ so that $\lambda(x) + \mu(x) > 1$ and this is as $\lambda q \mu$; otherwise, we obtain $\lambda(x) + \mu(x) \leq 1$, which is denoted as $\lambda \overline{q} \mu$ ([9]). If λ and μ are q-coincident in X, then $\lambda(x) \neq 0$, $\mu(x) \neq 0$ and consequently $(\lambda \cap \mu)(x) \neq 0$ ([9]).

A fuzzy topology on X (according to Chang, [7]) is a class $\tau \leq \mathcal{F}(X)$ which satisfies the following conditions (or axioms):

(T₁) **0**, **1** $\in \tau$; (T₂) if $\delta_i \in \tau$, $i = \overline{1, n}$, then $\bigcap_{i=1}^n \delta_i \in \tau$, where $\bigcap_{i=1}^n \delta_i = \min_{1 \le i \le n} \delta_i$; (T₃) if $\delta_i \in \tau$, $i \in I$, then $\bigcup_{i \in I} \delta_i \in \tau$.

The couple (X, τ) is defined as a fuzzy topological space (according to Chang, [7]), abbreviated f.t.s. Each element of the τ class is a fuzzy open $-\tau$ set and the complement of a fuzzy open $-\tau$ set is called a fuzzy closed $-\tau$ set.

The interior and the closure of the set $\lambda \in \mathcal{F}(X)$ are defined by (see [7]):

Int
$$\lambda = \lambda = \bigcup \{\delta; \delta \leq \lambda, \delta \in \tau \}$$
, Cl $\lambda = \overline{\lambda} = \bigcap \{\sigma; \sigma \geq \lambda, \sigma^c \in \tau \}$.

Consider a f.t.s. (X, τ) and $\lambda \in \mathcal{F}(X)$. The set λ is called:

- a) semi-open F, if $\lambda \leq \lambda$;
- b) regular closed F (resp. regular open F), if $\lambda = \overset{\circ}{\lambda}$ (resp. $\lambda = \overline{\lambda}$) ([2]).

21

The complement of a semi-open F set is called semi-closed F set. The reunion of all semi-open F sets of the space X included in $\lambda \in \mathcal{F}(X)$ is called the semi-interior F of λ and is denoted as

Fd Int λ or Fd λ . The intersection of all semi-closed F sets of the space X containing λ is called the F semi-closure of λ and it is denoted as FdCl or Fd $\overline{\lambda}$.

We assume that the fuzzy point x_{α} in X is a θ -semi-cluster point for $\lambda \in \mathcal{F}(X)$ if $\lambda q \overline{\mu}$ for any μF semi-open set with $x_{\alpha}q\mu$. The set of all θ -semi-cluster points for λ is called the F θ -semi-closure of λ and it is marked as F θ -dCl $\overline{\lambda}$ or F θ -d $\overline{\lambda}$. We say that the λ set is F θ -semi-closed if $\lambda = F\theta$ -d $\overline{\lambda}$. The complement of a F θ -semi-closed set is called F θ -semi-open ([5]).

Fuzzy Minimal Structures

V. Popa and T. Noiri have created and developed in [10] and [11] an extremely interesting unified theory of the main patterns of continuity, grounded on the concept of m-structure (or minimal structure), introduced by the same authors. As a generalization of the fuzzy domain, we have introduced the concept of fuzzy minimal structure (or F_m -structure) in [4].

We are going to review some of the definitions and some of the lemmas and theorems in [4].

Definition 1. Consider $\mathcal{F}(X)$ the class of the fuzzy subsets of the X space. We assume that the subclass $\mathcal{F}m_X \leq \mathcal{F}(X)$ is a fuzzy minimal structure on X (or a F_m-structure) if $\mathbf{0} \in \mathcal{F}m_X$, $\mathbf{1} \in \mathcal{F}m_X$. The couple $(X, \mathcal{F}m_X)$ is by definition a fuzzy minimal space or a F_m-space. The set $\lambda \in \mathcal{F}(X)$ is called F_m-open set if $\lambda \in \mathcal{F}m_X$; if $\lambda^c \in \mathcal{F}m_X$, then λ is called a F_m-closed set.

Remark 1. The definition of the fuzzy minimal structure maintains only the first condition of the definition of a fuzzy topology (according to Chang).

Definition 2. Consider $X \neq \emptyset$, ${}^{\mathcal{F}}m_X$ a F_m -structure on X and $\lambda \in \mathcal{F}(X)$. Then, the F_m -closure and the F_m -interior are defined as:

a) ${}^{F}m_X - \overline{\lambda} = \bigcap \{\sigma; \lambda \le \sigma, \sigma^c \in {}^{F}m_X\} = \inf\{\sigma; \lambda \le \sigma, \sigma^c \in {}^{F}m_X\}, respectively$

b)
$${}^{F}m_X - \lambda = \bigcup \{\delta; \delta \leq \lambda, \delta \in {}^{F}m_X\} = \sup \{\delta; \delta \leq \lambda, \delta \in {}^{F}m_X\}$$

The F_m-closure and the F_m-interior of λ are denoted as $\mathcal{F}m_X$ - Cl λ , respectively $\mathcal{F}m_X$ -Int λ .

Lemma 1. Consider $X \neq \emptyset$, ${}^{\mathcal{F}}m_X$ a F_m -structure on X and λ , $\mu \in \mathcal{F}(X)$. Then the following propositions are true:

- (1) $\mathcal{F}m_X \overline{\lambda}^c = (m_X \lambda)^c, \mathcal{F}m_X \lambda^c = (\mathcal{F}m_X \overline{\lambda})^c;$
- (2) If $\lambda^{c} \in {}^{\mathcal{F}}m_{X}$ then ${}^{\mathcal{F}}m_{X} \overline{\lambda} = \lambda$, and if $\lambda \in {}^{\mathcal{F}}m_{X}$ then ${}^{\mathcal{F}}m_{X} \overset{\circ}{\lambda} = \lambda$;

(3)
$$\mathcal{F}_{m_X}$$
- **0** = **0**, \mathcal{F}_{m_X} - **1** = **1**, \mathcal{F}_{m_X} - **1** = **1**

- (4) If $\lambda \leq \mu$ then $\mathcal{F}m_X \overline{\lambda} \leq \mathcal{F}m_X \overline{\mu}$, $\mathcal{F}m_X \overset{\circ}{\lambda} \leq \mathcal{F}m_X \overset{\circ}{\mu}$;
- (5) $\lambda \leq \mathcal{F}m_X \overline{\lambda}$, $\mathcal{F}m_X \lambda \leq \lambda$;
- (6) $\mathcal{F}m_X (\mathcal{F}m_X \overline{\lambda}) = \mathcal{F}m_X \overline{\lambda}$, $\mathcal{F}m_X \operatorname{Int}(\mathcal{F}m_X \overset{\circ}{\lambda}) = \mathcal{F}m_X \overset{\circ}{\lambda}$.

Lemma 2. Consider $(X, \mathcal{F}m_X)$ a F_m -space, $\lambda \in \mathcal{F}(X)$ and x_α a fuzzy point in X. Then $x_\alpha \in \mathcal{F}m_X - \overline{\lambda}$ if and only if $\mu q \lambda$ for any set $\mu \in m_X$ satisfying the condition $x_\alpha q \mu$.

Definition 3. We say that \mathcal{F}_{m_X} has the property (**B**) if $(\delta_i)_{i \in I} \leq \mathcal{F}_{m_X}$ implies that $\bigcup_{i \in I} \delta_i \in \mathcal{F}_{m_X}$.

Remark 2. This definition maintains only the conditions (T_1) and (T_3) of the definition of a fuzzy topology (according to Chang).

Remark 3. For a F_m -structure having the property (**B**), there can be used the fuzzy supra-topology terminology (see [8]). In this case the elements of the supra-topology are called fuzzy supra-open sets, and their complements are called fuzzy supra-closed sets (see [8]). We can define the supra-closure and the supra-interior of a fuzzy set by analogy with the already known definitions.

Lemma 3. Consider $X \neq \emptyset$, ${}^{\mathcal{F}}m_X$ a fuzzy supra-topology on X and $\lambda \in \mathcal{F}(X)$. Then:

- (1) $\lambda \in \mathcal{F}m_X$ if and only if $\mathcal{F}m_X \lambda^\circ = \lambda$;
- (2) λ is $\mathcal{F}m_X$ -closed if and only if $\mathcal{F}m_X$ $\overline{\lambda} = \lambda$;
- (3) $\mathcal{F}_{m_X} \lambda^{\circ} \in \mathcal{F}_{m_X}$ and $\mathcal{F}_{m_X} \overline{\lambda}$ is \mathcal{F}_{m_X} closed.

Theorem 1. For a fuzzy minimal structure $\mathcal{F}m_X$ the following propositions are equivalent:

- (1) $\mathcal{F}m_X$ is a supra-topology on X;
- (2) If ${}^{\mathcal{F}}m_X \lambda^{\circ} = \lambda$, then $\lambda \in {}^{\mathcal{F}}m_X$;
- (3) If $\mathcal{F}m_X \overline{\mu} = \mu$, then $\mu^c \in \mathcal{F}m_X$.

Definition 4. Consider the fuzzy minimal space $(X, {}^{\mathcal{F}}m_X)$ and the fuzzy topological space (Y, t). We say that $f:(X, {}^{\mathcal{F}}m_X) \to (Y, t)$ is F_m -continuous (fuzzy) if for any fuzzy point x_a in X and for any set $v \in t$ with $f(x_a)qv$, there exists $\delta \in {}^{\mathcal{F}}m_X$ with $x_aq\delta$ so that $f(\delta) \leq v$. The f function is F_m -continuous (fuzzy) on X if it has this property in all the fuzzy points from X.

The next theorem is a characterization theorem for the F_m- continuous functions (fuzzy).

Theorem 2. Consider the fuzzy minimal space $(X, \mathcal{F}m_X)$, the fuzzy topological space (Y,t) and the function $f:(X, \mathcal{F}m_X) \to (Y, t)$. Then the following assertions are equivalent:

- (1) f is F_m -continuous (fuzzy);
- (2) $f^{-1}(v) = \mathcal{F}m_X$ Int $f^{-1}(v)$, $(\forall) v \in t$;
- (3) ${}^{\mathcal{F}}m_X f^{-1}(\sigma) = f^{-1}(\sigma) \ (\forall) \sigma \in \mathcal{F}(Y) \text{ where } \sigma^c \in t;$
- (4) ${}^{\mathcal{F}}m_X f^{-1}(\mu) \leq f^{-1}(\overline{\mu})_*(\forall) \ \mu \in \mathcal{F}(Y);$
- (5) $f(\mathcal{F}m_X \overline{\lambda}) \leq \overline{f(\lambda)}, (\forall) \ \lambda \in \mathcal{F}(X);$
- (6) $f^{-1}(\mu) \leq \mathcal{F}m_X$ Int $f^{-1}(\mu)$, $(\forall) \mu \in \mathcal{F}(Y)$.

Remark 4. Along the whole length of the paper, in the case of fuzzy spaces the common points of the space *X* are substituted by fuzzy points and there is used the q-coincident relation.

F_m-Quasi-Irresolute Functions

The fuzzy irresolute functions and the fuzzy quasi-irresolute functions have been introduced and studied in [3]. Further on, the concept of F_m -quasi-irresolute function has been introduced in [6], as follows.

Definition 5. Consider the fuzzy minimal space $(X, \mathcal{F}m_X)$, the fuzzy topological space (Y, t) and the function $f:(X, \mathcal{F}m_X) \to (Y, t)$. We say that the function f is F_m -quasi-irresolute in the fuzzy point x_α in X if for any set v, F-semi-open in (Y, t) with $f(x_\alpha)qv$, there exists $\delta \in \mathcal{F}m_X$ with $x_\alpha q\delta$ so that $f(\delta) \leq \overline{v}$. We say that the function f is F_m -quasi-irresolute on X if it has this property in all the fuzzy points in X.

As in [6] we have not focused too much on this particular concept; this class of functions will be later analyzed, by introducing and explaining some characterization theorems.

Theorem 3. The function $f:(X, \mathcal{F}m_X) \to (Y, t)$ is F_m -quasi-irresolute in the fuzzy point x_α in X if and only if for any F-semi-open set v in X, with $f(x_\alpha)qv$ we have $x_\alpha q F_m$ - Int $(f^{-1}(\overline{v}))$.

Proof

Necessity. We assume that f is F_m -quasi-irresolute, therefore the conditions of Definition 5 are satisfied. This implies $x_{\alpha} q\delta$, $\delta \leq f^{-1}(\overline{\nu})$ (because $f^{-1}(f(\delta)) = \delta \leq f^{-1}(\overline{\nu})$ and therefore $x_{\alpha} q F_m$ -Int $(f^{-1}(\overline{\nu}))$.

Sufficiency. Consider v a F-semi-open set in(Y, t) with $f(x_{\alpha})qv$. As by hypothesis $x_{\alpha}q$ F_m - Int($f^{-1}(\bar{v})$), there exists $\delta \in \mathcal{F}m_X$ so that $x_{\alpha} q\delta$ and therefore $\delta \leq f^{-1}(\bar{v})$. This implies $f(\delta) \leq f(f^{-1}(\bar{v})) \leq \bar{v}$, which proves that f is F_m-quasi-irresolute in the fuzzy point x_{α} .

Theorem 4. Consider the previous spaces and the function $f:(X, \mathcal{F}m_X) \rightarrow (Y, t)$. Then the following properties are equivalent:

- (1) f is F_m -quasi-irresolute;
- (2) $f^{-1}(v) \leq F_{m}$ Int $(f^{-1}(\overline{v})), (\forall) v \in \mathcal{F}(Y)$, F-semi-open in(Y, t);
- (3) F_m -Cl $(f^{-1}(\operatorname{Int} \sigma)) \leq f^{-1}(\sigma), (\forall) \sigma \in \mathcal{F}(Y),$ F-semi- closed in (Y, t);
- (4) $\operatorname{F}_{\mathrm{m}}$ -Cl $(f^{-1}(\operatorname{Int}(\operatorname{Fd}\overline{\mu}))) \leq f^{-1}(\operatorname{Fd}\overline{\nu}), (\forall) \mu \in \mathcal{F}(Y);$

(5)
$$f^{-1}(\operatorname{Fd} \mu) \leq \operatorname{F_m-Int}(Fd\mu), (\forall)\mu \in \mathcal{F}(Y).$$

Proof

(1) \Rightarrow (2). If $v \in \mathcal{F}(Y)$ and x_{α} is a fuzzy point in X with $x_{\alpha}q f^{-1}(v)$, then $f(x_{\alpha})qv$, where $f(x_{\alpha})$ is a fuzzy point in Y. We assume that v, F-semi-open in (Y, t) and f, F_m -quasi-irresolute in x_{α} . According to Theorem 3, $x_{\alpha}q F_m$ -Int $(f^{-1}(\overline{v}))$ and therefore $f^{-1}(v) \leq F_m$ -Int $(f^{-1}(\overline{v}))$.

(2) \Rightarrow (3). If $\sigma \in \mathcal{F}(Y)$ and it is F-semi-closed in (Y, t), then σ^c is F-semi-open in (Y, t) and according to a property of f^{-1} (see [13]), according to (2) and to Lemma 1, it follows that

 $(f^{-1}(\sigma))^c = f^{-1}(\sigma^c) \le F_m - \operatorname{Int}(f^{-1}(\overline{\sigma}^c)) = F_m - \operatorname{Int}(f^{-1}(\sigma^c))^c = F_m - (\operatorname{Int}(f^{-1}(\sigma^c)))^c = (F_m - (f^{-1}(\sigma^c)))^c$. This implies that $F_m - Cl(f^{-1}(\operatorname{Int} \sigma)) \le f^{-1}(\sigma)$.

(3) \Rightarrow (4). If $\mu \in \mathcal{F}(Y)$, then $\operatorname{Fd}\overline{\mu}$ is F-semi- closed in (*Y*,*t*) and according to (3) there follows $\operatorname{F_m-Cl}(f^{-1}(\operatorname{Int}(\operatorname{Fd}\overline{\mu}))) \leq f^{-1}(\operatorname{Fd}\overline{\mu})$.

(4)
$$\Rightarrow$$
 (5). If $\mu \in \mathcal{F}(Y)$, then $f^{-1}(\operatorname{Fd}\mu) = (f^{-1}(\operatorname{Fd}\overline{\mu}^{\,c}))^{c} \le (\operatorname{Fm-Cl}(f^{-1}(\operatorname{Int}(\operatorname{Fd}\overline{\mu}^{\,c}))))^{c} = \operatorname{Fm-Int}(Fd\mu)$.

(5) \Rightarrow (1). Let us consider x_{α} a fuzzy point in X and $v \in \mathcal{F}(Y)$, F-semi-open in (Y,t) with $f(x_{\alpha})qv$.

This implies that $x_{\alpha}qf^{-1}(v) = f^{-1}(Fdv) \leq F_m - Int(f^{-1}(Fd\mu)) \leq F_m - Int(f^{-1}(\bar{v})) \leq F_m - Int(f^{-1}(\bar{v}))$ and therefore $x_{\alpha}qF_m - Int(f^{-1}(\bar{v}))$. According to Theorem 3, f is F_m -quasi-irresolute in the fuzzy point x_{α} .

Theorem 5. Consider the function $f: (X, \mathcal{F}m_X) \to (Y, t)$, where $\mathcal{F}m_X$ is a fuzzy supra-topology on *X*. Then the following properties are equivalent:

- (1) f is F_m -quasi-irresolute;
- (2) $f^{-1}(\sigma) \in {}^{\mathcal{F}}m_X$, $(\forall) \sigma \in \mathcal{F}(Y)$, F-regular closed set;
- (3) $f^{-1}(v^c) \in \mathcal{F}m_X$, $(\forall) v \in \mathcal{F}(Y)$, F-regular open set;

(4) $f^{-1}(\mu) \in \mathcal{F}m_X$, $(\forall) \mu \in \mathcal{F}(Y)$, F θ -semi-open set;

(5) $f^{-1}(\delta^{c}) \in \mathcal{F}m_{X}$, $(\forall) \ \delta \in \mathcal{F}(Y)$, F θ -semi-closed set.

Proof

(1) \Rightarrow (2). If $\sigma \in \mathcal{F}(Y)$ is a F-regular closed set, then σ is a F-semi-open set (see [2]) and according to Theorem 4 (2), $f^{-1}(\sigma) \leq F_{m}$ -Int $(f^{-1}(\overline{\sigma})) = F_{m}$ -Int $(f^{-1}(\sigma))$. According to Lemma 1, $f^{-1}(\sigma) = F_{m} - \text{Int}(f^{-1}(\sigma))$ and according to Lemma 3, $f^{-1}(\sigma) \in \mathcal{F}m_{X}$.

 $(2) \Rightarrow (3)$. This implication is obvious.

(3) \Rightarrow (1). Any F θ -semi-open set is an union of F-regular-closed sets and that ${}^{\mathcal{F}}m_X$ is a supra-topology.

(4) \Rightarrow (5). This implication is obvious.

(5) \Rightarrow (1) Let us consider x_{α} a fuzzy point in X and $v \in \mathcal{F}(Y)$ a F- semi-open set with $f(x_{\alpha})qv$. Since \overline{v} is F-regular-closed, it is F θ -semi-open. Then the set $\delta = f^{-1}(\overline{v})$ is F_m- open (according to (4)) with $x_{\alpha}q\delta$ and therefore $f(\delta) \leq (\overline{v})$, which proves that f is a F_m-quasi-irresolute function.

The concept of F_m-irresolute function is introduced by:

Definition 6. The function $f: (X, \mathcal{F}m_X) \to (Y, t)$ is called F_m -irresolute in the fuzzy point x_a in X if for any set $v \in \mathcal{F}(Y)$, F-semi-open in (Y, t) with $f(x_a)qv$ there exists $\delta \in \mathcal{F}m_X$ with $x_aq\delta$ so that $f(\delta) \leq v$). The function f is F_m -irresolute on X if it has this property in all the fuzzy points in X. The following characterization theorem holds:

Theorem 6. The function $f:(X, \mathcal{F}m_X) \to (Y, t)$ is F_m -irresolute if and only if for any set v, F-semi-open in (Y, t), we have $f^{-1}(v) = F_m$ -Int $(f^{-1}(v))$.

Proof

Necessity. Consider f, a F_m -irresolute function, therefore the conditions of Definition 6 are satisfied. This implies that $\delta \leq f^{-1}(v)$ and therefore $x_a \in \delta \leq f^{-1}(v)$, where, from $x_a \in F_m$ -Int $(f^{-1}(v))$, we conclude that $f^{-1}(v) \leq F_m$ -Int $(f^{-1}(v))$. According to Lemma 1 (5), F_m -Int $(f^{-1}(v)) \leq f^{-1}(v)$. We obtain $f^{-1}(v) = F_m$ -Int $(f^{-1}(v))$.

Sufficiency. Consider v a F-semi-open set in (Y, t), so that $f^{-1}(v) = F_m$ -Int $(f^{-1}(v))$ and x_α a fuzzy point in X so that $x_\alpha q f^{-1}(v)$. Then there exists $\delta \in \mathcal{F}m_X$ with $x_\alpha q\delta$ and therefore $\delta \leq f^{-1}(v)$. This implies that $f(\delta) \leq v$, which proves that f is a F_m-irresolute function.

Remark 5. Obviously, any F_m -irresolute function is also F_m -quasi-irresolute, but generally the reciprocal of this proposition is not true. In order to obtain a true reciprocal, a supplementary condition needs to be introduced - the F-interiority condition, defined by:

Definition 7. We say that the function $f: (X, {}^{\mathcal{F}}m_X) \to (Y, t)$ satisfies the F-interiority condition if F_m -Int $(f^{-1}(\bar{v})) \leq f^{-1}(v)$ for any set $v \in \mathcal{F}(Y)$, F-semi-open in (Y, t).

Theorem 7. If the function $f: (X, \mathcal{F}m_X) \rightarrow (Y, t)$ is F_m -quasi-irresolute and it satisfies the F-interiority condition, then f is F_m -irresolute.

Proof. Consider $f \to F_m$ -quasi-irresolute. Then, if $v \in \mathcal{F}(Y)$ is a F-semi-open set in (Y, t), according to Theorem 4 (2), we obtain the relation $f^{-1}(v) \leq F_m$ -Int $(f^{-1}(\overline{v}))$. According to the F-interiority condition of f and according to Lemma 1, we obtain

$$f^{-1}(v) \le F_{m}$$
-Int $(f^{-1}(\overline{v})) = F_{m}$ -Int $(F_{m}$ -Int $(f^{-1}(v))) \le F_{m}$ -Int $(f^{-1}(v))$,

which implies $f^{-1}(v) = F_m$ -Int $(f^{-1}(v))$; this proves, by applying Theorem 6, that the function f is F_m -irresolute.

According to the above mentioned propositions, if the F-interiority condition is satisfied, the concepts of F_m -irresolute function and F_m -quasi-irresolute function are equivalent. The concepts of F_m -contra-continuous function and F_m -almost-contra-continuous function have been introduced in [5] and [6].

Definition 8. The function $f: (X, \mathcal{F}m_X) \rightarrow (Y, t)$ is called

- (a) F_m-contra-continuous if $f^{-1}(v) = F_m Cl(f^{-1}(v)), (\forall) v \in t$;
- (b) F_m -almost-contra-continuous if $f^{-1}(v) = F_m$ -Cl $(f^{-1}(v))$ for any set $v \in \mathcal{F}(Y)$, F-regular-open.

In [6] we have established the equivalence between the concepts of F_m -almost-contracontinuous function and F_m -quasi-irresolute function (see Theorem 5 in [6]).

In conclusion, if the F-interiority condition is satisfied, the concepts of F_m -irresolute function, F_m -quasi-irresolute function and F_m -almost-contra-continuous function are equivalent.

References

- 1. Akdag, M. Almost Forms of Some Fuzzy Continuities, *Transaction of Academy of Sciences* of Azerbadjan, Series of Physical and Mathematical Sciences, No.2, 3, 2000, pp.70-76
- 2. A z a d, K.K. On Fuzzy Semicontinuity, Fuzzy Almost Continuity and Fuzzy Weakly Continuity, *Journal of Mathematical Analysis and Applications*, No. 82, 1981, pp. 14-32
- 3. Brescan, M. Applications Floues Irrésolutes. Applications Floues Quasi-Irrésolutes, *Studii şi Cercetări Științifice, Seria Matematică*, Universitatea din Bacău, No. 8, 1968, pp. 9-18
- 4. Brescan, M. Structures Floues Minimaux, Petroleum-Gas University of Ploiești Bulletin, Mathematics-Informatics-Physics Series, vol. LIII, No.1, 2001, pp.115-122
- 5. Brescan, M. Contre-Continuite dans les Structures Floues Minimaux, Petroleum-Gas University of Ploiești Bulletin, Mathematics-Informatics-Physics Series, No.2, 2008, pp.17-26
- 6. Brescan, M.- Popa, C., Presque Contre-Continuite dans les Structures Floues Minimaux, Scientific Studies and Research, Mathematics Series, University of Bacău, No.19, 2009, pp. 33-48
- 7. Chang, C.L. Fuzzy Topological Spaces, *Journal of Mathematical Analysis and Applications*, No.43, 1973, pp. 734-742
- 8. Min, W.K., Park, C.K. On Fuzzy M-sets and Fuzzy M-Continuity, International Journal of Fuzzy Logic and Intelligent Systems, March 2005, vol.5, No.1, pp .59-63
- 9. Ming, P.P., Ming, L.Y. Fuzzy Topology I, Journal of Mathematical Analysis and Applications, 77, 1980, pp. 20-37
- Noiri, T., Popa, V. On M-continuous functions, Analele Universității "Dunărea de Jos", Galați, Fascicola II, XVIII (2000), pp. 31-41
- 11. Noiri, T., Popa, V. On the definitions of some generalized forms of continuity under minimal conditions, *Memoirs Faculty of Sciences Kochi University Series A, Mathematics*, 22, 2001
- 12. Noiri, T., Popa, V. On *m*-Quasi-Irresolute Functions, *Mathematica Moravica*, 2005, vol. 9, pp. 25-41
- 13. Tuna, H., Yalvaç, S. Fuzzy Sets and Functions of Fuzzy Spaces, *Journal of Mathematical Analysis and Applications*, 126, 1987, pp. 409-423

Funcții quasi-irresolute în structuri fuzzy minimale

Rezumat

Scopul acestei lucrări este de a generaliza pentru o structură fuzzy minimală conceptul de funcție fuzzy m-quasi-irresolută introdus în Topologia generală de Takashi Noiri și Valeriu Popa. Se dau câteva teoreme de caracterizare importante și se pun în evidență echivalențe între unele noțiuni.